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Abstract 

A numerical test is carried out on the theory proposed 
by one of the authors [Allegra (1979). Acta Cryst. A35, 
213-220], which derives three-phase invariants from 
the Patterson function. The method is checked with two 
structures already solved (P1 space group). For the 
strong Sayre triples the calculated cosine invariants are 
generally positive; the negative invariants arise from 
relatively minor features of the Patterson background, 
and so are more difficult to obtain. With a suitable 
choice both of the error standard deviation and of the 
degree of sharpening of the Patterson function, the 
average value of the calculated cosine invariants within 
small subsets of Sayre triples is reasonably close to + 1, 
while that of the negative invariants is either smaller 
and positive or slightly negative. The agreement 
between the test calculations and the results obtained 
after structural refinement is much imprdved if the 
calculated amplitudes and an extended limiting sphere 
are used instead of the experimental data. 

Foreword 

In 1979 a theory was proposed by one of us that 
correlates the three-phase invariants with the Patterson 
function P(u). It was shown first that" p2(u) is 
proportional to the mean-square structure factor of a 
hypothetical structure obtained by self-multiplying the 
actual electron density after a translation u (the 
'product' structure). Hence through least-squares con- 
siderations three-phase cosine and sine invariants are 
correlated with the Fourier components of the function 
[P(u)] -2 (Allegra, 1979). Accordingly, the low-valued 
Patterson regions contribute most of the information, 
and this suggests that there may be a strong influence 
of the experimental errors on the results. As well as 
undertaking experimental checks on a new theory, this 
consideration prompted us to compare our cal- 
culations with the data of previously solved structures. 
We chose to limit our attention to the P1 space group: 
this permits a non-trivial test on the negative cosine 
invariants, without taking advantage of peculiar sym- 
metry effects. 

Computational procedure 

The three-phase cosine invariants are derived from a 
set of inhomogeneous linear equations, each set 
comprising in principle all triples involving one par- 
ticular 'pivot' reflection, the reciprocal vector of which 
is H. The j th equation of the related system, associated 
with the reciprocal vector Kj, reads 

Y [ 2 -  c~(H- 2Kt)]IFKF._K,I(QH_K,_K, + QK,- K) 
i 

x cos (~P-H + ~P-K, + ~ + K,) 

=-21FoF.I(Q._Kj+ QO, (I) 

where ~ is the Kronecker delta. The meaning of QK is 

1 cos (2nK. u) d 3 u, (2) OK = (/b 2(u)--'---'- ~ 

where (p2(u)) stands for 'best estimate of the square of 
the Patterson function P(u)' at the vector point u within 
the unit-cell volume V. In actual practice, if the 
calculated value P(u) is sufficiently larger than zero we 
have 

(P2(u)) = e2(u) + a~ (3) 

where a 2, i.e. the error variance of P(u), is assumed to 
be constant throughout the unit cell. If P(u) is very 
close to or smaller than zero a more general statistical 
criterion is needed to evaluate (/32(u)) (see Allegra, 
1979, Fig. 1). Although the a priori evaluation of cr e 
appears to be rather difficult, we decided to take it of 
the same order of magnitude as the lowest value of the 
Patterson function, see following. It should be pointed 
out that in system (1) the only unknowns are the cosine 
invariants, all the remaining quantities being derivable 
from the observed amplitudes. 

Indicating with c,(i) the cosine invariant COS(CP_H + 
cPK, + ~P.-K,) within system (1), from an analysis of the 
coefficients QK and assuming all the three amplitudes 
IFHI, IFKI and IFH_K,I to be large, it was suggested 
that the coefficient of the diagonal element ca(j) should 
be usually very large and positive, while the constant 
term on the right-hand side should also be large and 
positive. In conclusion, the most probable sign of cn(j) 
is positive if the three amplitudes contributing to the 
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274 PATTERSON DERIVATION OF STRUCTURE INVARIANTS 

triple are large, in agreement with the current statistical 
theories. Accordingly, it is a reasonable expectation 
that if any cosine invariant is to be negative, relatively 
minor details of the low-valued Patterson regions 
should concur to determine its negative value from 
system (1). 

From our numerical analysis, details of this sort are 
strongly influenced by the following factors: (i) the 
experimental error of the observed amplitudes; (ii)the 
series truncation in the evaluation of P(u); (iii) the 
choice of trp; (iv) the (possible) degree of sharpening of 
P(u). As for the last item, we have used the following 
procedure to build up a partially sharpened Patterson 
function. Let Z l and ft(l-I) respectively be the atomic 
number of the ith atom and its scattering factor at the 
reciprocal point H. If p is a parameter between zero 
and unity, defining 

g,(H) = (1 - p) Z l + Pft(H), (4) 

the coefficients of the partially sharpened Patterson 
function are 

y z? 
p 2 = F  2 t 

g~(H) 
l 

where the sums are extended to all the atoms within the 
unit cell. It is easy to verify that by setting p = 1 we 
have a completely sharpened function, i.e. the contri- 
buting atoms are (approximately) reduced to point-like 
entities, while for p = 0 the usual Patterson coefficients 
are employed. A large value of p may expand the 
background details that are important for our purposes, 
but it may inflate the error and truncation effects at the 
same time; search for a compromise is one of the 
scopes of the present investigation. 

Numerical results and discussion 

Two previously solved structures were used in our 
calculations, namely that of the A-cis'-cis stereoisomer 
of dodecahydrotriptycene (Albinati, BriJckner & A1- 
legra, 1977; structure A) and that of 2-exo-(2-methyl- 
allyl)norbornane-3-exo-carboxylic acid (Albinati, 
Zocchi, Germain & Declercq, 1973; structure B), both 
of which belong to the P1 space group, as anticipated. 
The two structures respectively contain a total of 40 
and 28 C + O atoms within the unit cell. 

Each system of linear equations like (1), based on  
any selected reciprocal vector I-I, may produce many 
cosine invariants; in our cases an average of about one 
hundred significant invariants per basic reflection was 
obtained. Consequently, instead of giving all the results 
in detail we decided to show the average values of the 
invariants grouped within subsets according to the 
value of IE_HEKEH-KI, limiting our analysis to the 

reflections with I EI > 1. The subsets were constructed 
as given in Table 1, and the average values will be given 
separately for the cosine invariants known to be 
positive and for those known to be negative. Also, we 
will compare the results obtained from functions 
(p2(u)) [see (2)] evaluated under different conditions, 
with the purpose of testing the effects of the factors (i) 
to (iv) listed in the previous section. 

Table 2 reports some results obtained with the same 
degree of sharpening [p = 0.8, see (4)] and with three 
different values of trp for both structures. The figure 
selected for p appeared to represent the best com- 
promise between the contrasting requirements dis- 
cussed in the previous section. Calculated cosines 
outside the allowed range ( - 1 ) - ( +  1) may appear for 
low ap's; conversely, for high trp's they tend to assume 
uniform values much smaller than unity. These 
observations agree with the conclusion that inadequate 
account of the experimental error (i.e. too low a trp) 
may lead to erratic results while allowing for too wide 
error limits (high trp) may wipe out all the relevant 
information. As expected, the calculated cosines tend to 
be positive even when referring to a triple known to be 
negative, although they are smaller in this case than the 
corresponding cosines of positive triples, with virtually 
no exception. 

Table 3 shows a comparison for both structures 
between the results obtained for various degrees of 
sharpening p although with a fixed trp. Remembering 
that a strong sharpening emphasizes the details, 
therefore corresponding to the effect of a low tr e, the 
results of Table 2 produce information analogous to 
that extracted from Table 1. The value p = 0.8 appears 
to lead to optimal results in both cases. 

Table 4 shows tlae effect of the random errors, in 
addition to that of series truncation, for both 
structures. The cosine invariants calculated from the 
observed amplitudes, truncated at a minimum spacing 
dmi . = 0.9 A, are compared with those derived from the 
calculated amplitudes, with dml n = 0"6 A; the same 
values of trp and p are applied to both Patterson maps. 
As expected, the maps from the calculated amplitudes 
give a much better prediction for the negative cosine 
invariants. 

A deeper analysis was applied to results obtained 
with op = 60 e~A -3 and p = 0.8 for structure A and 
tr e = 20 e 2 A -3 and p = 0.8 for structure B, i.e. the 
values of ap and p giving estimated average cosines of 
order unity without great departures of single values 
from the mean (the calculated cosines range rather 
uniformly from - 0 . 2  to 1.2). Results are reported in 

Table 1. Definition of  the subsets of  the triples accord- 
ing to the value of  IE_n.EK.En_KI 

Type of subset 1 2 3 4 5 
Range of IE_ H.EK.EH_K I >20 14-20 9-14 6-9 <6 
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Table  2. Some results from structures A and B (see text) 

Each section summarizes the results from the system of linear equations based on the reflection indicated at the top, together with its E 
value in parentheses. Triples are classified into five subsets (see first column) according to the value of IE_nEKEH_ K I, see Table 1. 
Within each subset the triples known to be positive (+) are separated from those known to be negative (-) .  Under each (+, - )  label three 
columns report average values of Ca(i)'s corresponding to the three values of op used in the calculation (e 2 A~-3), see text. Numbers in 
parentheses indicate how many triples contribute to the average. The parameterp is set equal to 0.8. 

Structure A 

(+) (-) 

Subset ap 40 60 80 trp 40 60 80 

Reflection 6 - 5  1 (E = 6.55) 
1 (69) 2.278 1.289 1.115 / / / / 
2 (26) --0-1222 0.686 0.770 / / / / 
3 (1) 0.696 0.976 0.964 / / / / 

Reflection 2 8 0 (E = 4.05) 
i (23) 1.129 0.818 0.728 / / / / 
2 (23) 1.375 0.838 0.748 / / / / 
3 (22) 1-054 0.736 0.674 / / / / 

Reflection 0 6 0 (E = 3.01) 
l (9) 1-037 0.773 0.672 / / / f 
2 (6) 1.075 0.725 0.623 / / / / 
3 (30) 1.138 0.678 0.600 (l) 0.341 0.184 0.200 
4 (7) 0-754 0.414 0.379 (2) --1.122 -0 .292 --0.116 

Reflection 1 2 1 (E = 2.80) 
l (7) 1.276 1.032 0.927 / / / / 
2 (8) 0.906 0.855 0.790 / / / / 
3 (17) 1.198 0.847 0.771 / / / / 
4 (20) 0.634 0.687 0.637 (1) 0-062 0.377 0.391 
5 (I I) 1.310 0.798 0-674 (1) 0-791 0.176 0.183 

Reflection 4 - 1  1 (E = 2.80) 
1 (7) 1.018 0.845 0.762 / / / / 
2 (10) 1-333 0.918 0-814 (1) 0-491 0-434 0.410 
3 (22) 0.671 0.594 0.567 (2) 0.771 0.512 0.486 
4 (7) 0.757 0.591 0.525 (5) 0.758 0.688 0.613 
5 (3) 1.743 0.948 0.632 (3) 0.316 0.328 0-334 

Reflection-1 0 1 (E = 2.40) 
1 (6) 1.230 1.121 0-945 / / / / 
2 (6) 2.050 0.932 0.874 / / / / 
3 (19) 2.130 0.954 0-874 (1) 0.712 0.741 0.783 
4 (22) 1.846 0.835 0.750 (I) -2 .247 0.012 0.026 
5 (16) 2.036 0.743 0-638 (3) 1.492 0.314 0.182 

Reflection - 2  0 2 (E = 2.06) 
l (1) 1.671 1.423 1.238 / / / / 
2 (2) 1.117 1.037 0.928 / / / / 
3 (8) 1.086 0.829 0.712 (2) --0.015 0.379 0.401 
4 (18) 0.567 0-564 0-523 (4) 0-379 0-283 0-278 
5 (2 I) 0-564 0.477 0.434 (3) 0.398 0-051 0.078 

Structure B 

(+) (-) 

Subset trp 20 40 100 a~ 20 40 100 

Reflection - l  0 1 (E = 3.00) 
1 (1) 1.132 0.841 0.625 / / / / 
2 (11) 1.197 0.818 0.638 / / / / 
3 (16) 1.166 0.912 0.623 / / / / 
4 (30) 1-030 0.791 0.581 / / / / 
5 (28) 1.070 0.744 0.520 (4) 0.109 0.132 0.229 

Reflection 2 --3 1 (E = 2.40) 
I (1) 0.806 0.617 0.423 / / / / 
2 (3) 0.962 0.634 0-448 / / / / 
3 (7) 0.710 0.588 0.404 / / / / 
4 (22) 0.824 0.597 0.416 (2) 0.713 0.588 0.444 
5 (34) 0.686 0.431 0-342 (4) 0.341 0.301 0-284 

Reflection 3 - 2  2 (E = 1.80) 
3 (5) 0.688 0.594 0.318 ] / / / 
4 (10) 0.638 0.578 0.313 / / / / 
5 (43) 0-575 0.417 0-254 (7) 0.341 0.281 0.152 

Reflection 2 - 1  1 (E = 1.66) 
3 ( l i  0.535 0.481 0.304 / / / / 
4 (10) 0.650 0.521 0.325 / / / / 
5 (43) 0.558 0-417 0.271 (18) 0.187 0.190 0-193 

Reflection l 0 0 (E = 1.02) 
4 (2) 0.448 0.384 0.27 ! / , / / / 
5 (50) 0.402 0.318 0.248 (11) 0.187 0.182 0.174 
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Table  5 where the calculated cosines are grouped into 
five subsets according to their values and for each 
subset the number  of  known positive triples and the 
number  of  known negative triples are indicated. This 

table shows tha t  the magni tude of  the calculated 
cosines is itself a rough measure of  confidence of  their 
sign (provided there are no great distorsions due to a 
bad choice of  a v and p). 

Table 3. S o m e  resu l t s  f r o m  s t r u c t u r e s  A a n d  B 

The effect of an increasing sharpening of the Patterson function is reported. Parameter a e is set equal to 60 and 20 e 2/~-3 respectively. 

Structure A 

Subset 

Reflection 6 - 5  1 
I (69)  
2 (26) 
3 (1) 

Reflection 2 8 0 
1 (23)  
2 (23) 
3 (22) 

Reflection 0 6 0 
l (9) 
2 (6) 
3 (30) 
4 (7) 

Reflection l 2 l 
1 (7) 
2 (8) 
3 (17) 
4 (20) 
5 (11) 

Reflection 4 - 1 1 
I (7) 
2 (10) 
3 (22) 
4 (7) 
5 (3) 

Reflection - l  0 l 
(6) 

2 (6) 
3 (19) 
4 (22) 
5 (16) 

Reflection - 2  0 2 
1 (1) 
2 (2) 
3 (8) 
4 (18) 
5 (21) 

(+) (-) 

p 0 .0  0.8 1.0 p 0.0 0.8 1.0 

0.664 1.289 0.081 / / / 
0.659 0.686 -1.969 / / / 
0.486 0.976 -6.204 / / / 

0.393 0.818 -0 .144 / / / 
0.352 0.838 0.297 / / / 
0.273 0.736 0.137 / / / 

0-397 0.773 -3 .082 / / / / 
0.386 0.725 -0 .008 / / / / 
0.374 0.678 -13.766 (1) 0.243 0.184 1.941 
0.397 0.414 -1.464 (2) 0.186 -0-292 0.818 

0.598 1.032 3.141 / / / / 
0.581 0.855 -2.183 / / / / 
0.678 0.847 0.103 / / / / 
0.534 0.687 2.321 (1) 0.410 0.377 -2.131 
0.359 0.798 4.630 (1) 0.068 0.176 I. 184 

0.533 0.845 -3.895 / / / / 
0.565 0.918 2.797 (1) 0.489 0.434 -1.333 
0.522 0.594 -4 .322 (2) 0.557 0.512 1.386 
0.523 0.591 4.718 (5) 0.550 0.688 2.264 
0.335 0.948 - I. 519 (3) 0.228 0.328 - 2.924 

1.195 1.121 0.459 / / / / 
1.333 0.932 -0 .294 / / / / 
1.173 0.954 0.152 (1) 0.821 0.741 -0.095 
0.999 0.835 0.277 (1) 0.979 0.012 0.004 
0.865 0.743 0.011 (3) 0.505 0.314 0.026 

0.631 1.423 -1.413 / / / / 
0.658 1.037 2.818 / / / / 
0.487 0.829 3.421 (2) 0.302 0.379 0.555 
0.424 0.564 -3 .884 (4) 0.557 0.283 -2 .034 
0.299 0.477 2.418 (3) 0.204 0.051 3.592 

Structure B 

Subset 

Reflection- 1 0 1 
I (I) 
2 (11) 
3 (16) 
4 (30) 
5 (28) 

Reflection 2 - 3  l 
I (I) 
2 (3) 
3 (7) 
4 (22) 
5 (34) 

Reflection 3 - 2  2 
3 (5) 
4 (I0) 
5 (43) 

Reflection 2 - I 1 
3 (1) 
4 (lO) 
5 (43) 

Reflection 1 0 0 
4 (2) 
5 (50) 

(+) (-) 

p 0.5 0.8 p 0.5 0.8 

1.050 1.132 / / / 
1.077 1.197 / / / 
1.025 1.166 / / / 
0.965 1.030 / / / 
0.964 1.070 (4) 0.027 0.109 

0.710 0.806 / / / 
0.874 0.962 / / / 
0.576 0.710 / / / 
0.731 0.824 (2) 0.648 0.713 
0.631 0.686 (4) 0.296 0.341 

0.500 0.688 / / / 
0.625 0.638 / / / 
0.456 0.575 (7) 0.263 0.044 

0.455 0.535 / / / 
0.672 0.650 / / / 
0.468 0.558 (18) 0.250 0.197 

0.399 0.448 / / / 
0.366 0.402 (11) 0.207 0.187 
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Table 4. Some results in structures A and B (see text 
and Table 2) 

Compar ison between calculations carried out with Fobs's and with 
Fcalc's. The latter have been calculated up to sin 0/2  ~- 0.80.  
Parameter  p is set equal to 0-8 while tre is equal to 60 e 2 A -a in 
structure A and 20 e 2/k -3 in structure B. Numbers  in parentheses 
indicate how many triples contribute to the given average. 

Structure A 

(+) ( - )  

Subset Observed Calculated Observed Calculated 

Reflection 6 - 5  1 
1 1.289 (69) 0.695 (110) 
2 0.686 (26) / 
3 0.976 (I) / 

Reflection 1 2 1 
1 1.032 (7) 0.945 (14) 
2 0.855 (8) 0.851 (14) 
3 0.847 (17) 0.682 (28) 
4 0.687 (20) 0-576 (32) 
5 0.798 (11) 0.011 (4) 

Reflection 4 - 1 1 
1 0.845 (7) 0.746 (12) 
2 0.918 (I0) 0.629 (11) 
3 0.594 (22) 0.471 (27) 
4 0.591 (7) 0.337 (17) 
5 0.948 (3) 0.332 (7) 

Reflection--I 0 1 
l 1.121 (6) 0.922 (12) 
2 0.932 (6) 0.836 (15) 
3 0.954 (19) 0-664 (33) 
4 0.835 (22) 0-661 (41) 
5 0.743 (16) 0.276 (4) 

/ / 
/ / 
/ / 

/ / 
/ / 
/ / 

0.377 (l) --0.011 (2) 
/ / 

/ / 
/ / 

0.312 (2) 0.062 (2) 
0.295 (4) 0.092 (4) 

/ / 

/ / 
/ / 

0.741 (1) 0.015 (1) 
0-012 (I) -0 .293 (4) 
0.314 (3) --0.204 (4) 

Structure B 

(+) ( - )  

Subset Observed Calculated Observed Calculated 

Reflection- 1 0 1 
1 0.84l (1) 1.181 (5) / / 
2 0.818(11) 0.919(19) / / 
3 0.912 (16) 0.985 (24) / / 
4 0.791 (30) 0.931 (32) / / 
5 0.744 (28) 0.845 (25) 0.132 (4) 0.010 (7) 

Reflection 2 - 3  1 
1 0.618 (1) 0.748 (8) / / 
2 0.634 (3) 0.780 (12) / / 
3 0.588 (7) 0.810 (17) / / 
4 0.597 (22) 0.748 (32) / 0.043 (1) 
5 0.431 (34) 0.702 (35) 0.281 (7) 0.341 (10) 

Reflection 2 - 1 1 
3 0.481 (1) 0.856 (4) / / 
4 0.521 (10) 0.965 (22) / 0.223 (2) 
5 0.417 (43) 0.756 (38) 0.190 (18) 0.219 (25) 

Reflection 1 0 0 
4 0.384 (2) 0.544 (16) / 0.143 (3) 
5 0.318 (50) 0.531 (58) 0.182 (11) 0.260 (16) 

Concluding remarks 

The satisfactory degree of  discr iminat ion between 
positive and negative triples within small  subsets in the 

Table  5. Synthetic analysis of  the results obtained for 
structures A and B when a e = 60 e 2/k -3, p = 0.8 and 

tre = 20 e 2 A -3, p = 0.8 are used respectively 

Distinction among 'pivot '  reflections is omitted. Calculated triples 
are grouped according to their values within five subsets. For  each 
subset the number of  known positive triples and the number of  
known negative triples are indicated. 

Positive triples Negative triples 
Structure A 

Calculations based on seven 'pivot' reflections 

Subset a (cH > 1) 96 1 
Subset b (0.6 < CH < 1.0) 207 1 
Subset c (0.3 < cn < 0.6) 99 12 
Subset d (0 < cn < 0-3) 36 11 
Subset e (cn < 0) 9 5 

Structure B 

Calculations based on six 'pivot' reflections 

Subset a (cH > 1) 66 1 
Subset b (0-6 < cn < 1) 159 8 
Subset c (0.3 < cH < 0.6) 103 18 
Subset d (0 < cH < 0.3) 33 14 
Subset e (CH < 0) 13 20 

P1 space group, in spite of a few individual wrong 
predictions, suggests that the present approach may 
lead to a useful new figure of merit for multisolution 
methods. More generally, the present approach seems 
to offer an alternative way to the classical statistical 
derivation of three-phase invariants (Cochran, 1955; 
Hauptman, 1972; Giacovazzo, 1974). Of course it 
should be recalled for this purpose that new methods 
producing the statistical evaluation of high-order phase 
invariants (e.g. Hauptman, 1975; Giacovazzo, 
1976a,b,c; Hauptman & Green, 1976; Giacovazzo, 
1980) may also lead to negative cosine invariants in 
space groups with no translation symmetry elements. 
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